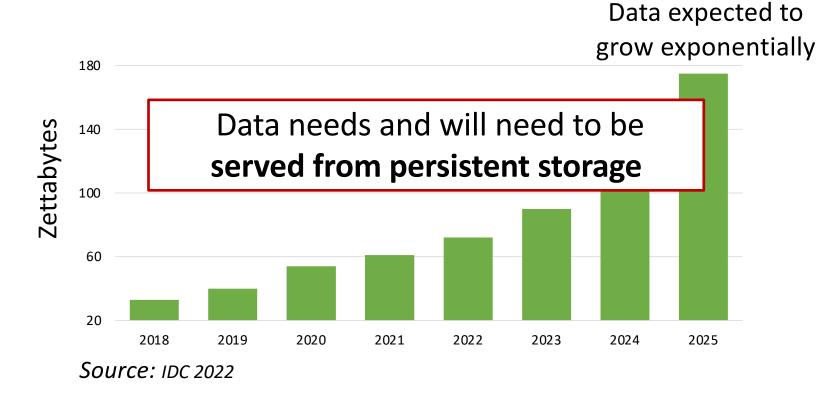
Characterizing Machine Learning I/O with MLPerf Storage

Oana Balmau UKRI Base-II Workshop, January 24th, 2024

Humanity produces a lot of data Data expected to grow exponentially Zettabytes Source: IDC 2022

Humanity produces a lot of data



Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

Dataset fits in system memory

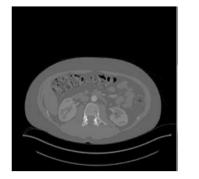
Dataset = 2x system memory

Training time increased by 3x

An example of a coronal section of one of the training cases with its ground truth segmentation overlaid (kidney in red, tumor in blue). Source https://arxiv.org/pdf/1912.01054.pdf

Medical image segmentation

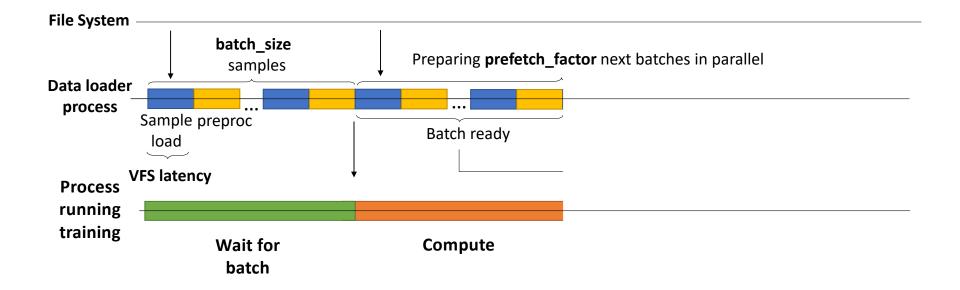
2019 Kidney Tumor Segmentation Challenge (KiTS19) CT scans from ~300 kidney tumor cases

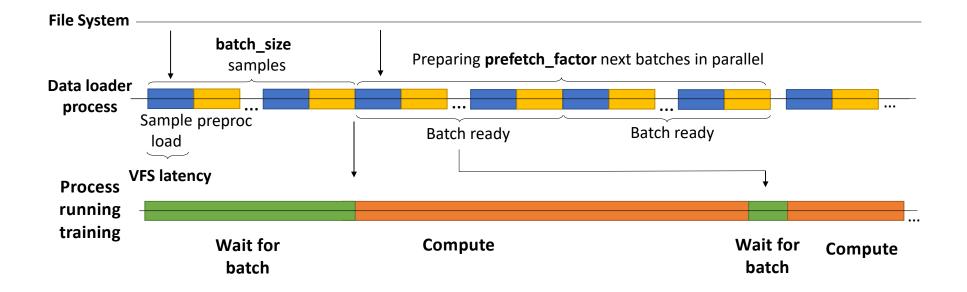


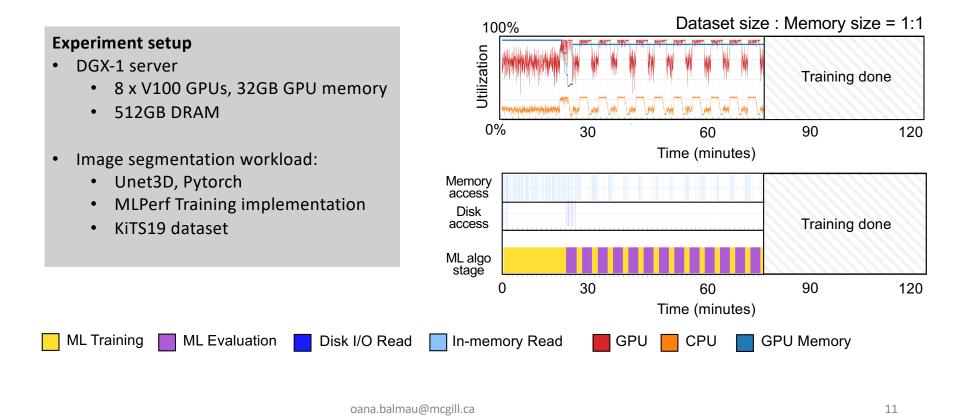
Sample images from the KiTS19 dataset before (left) and after (right) preprocessing. Source: <u>https://arxiv.org/pdf/1908.02625.pdf</u>

File System

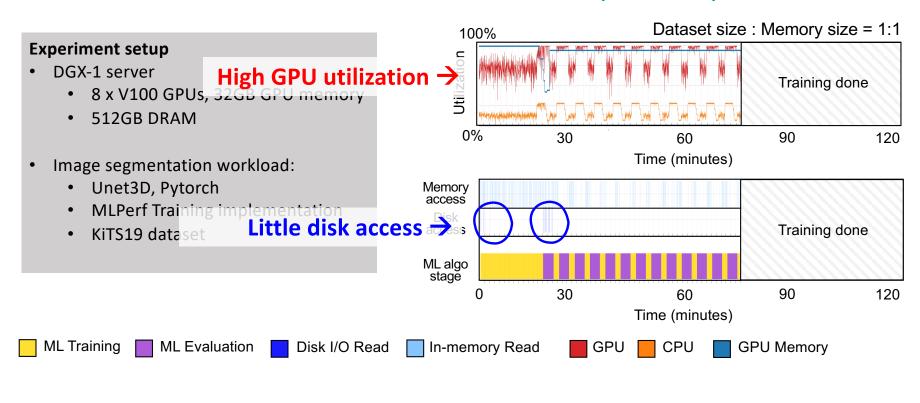




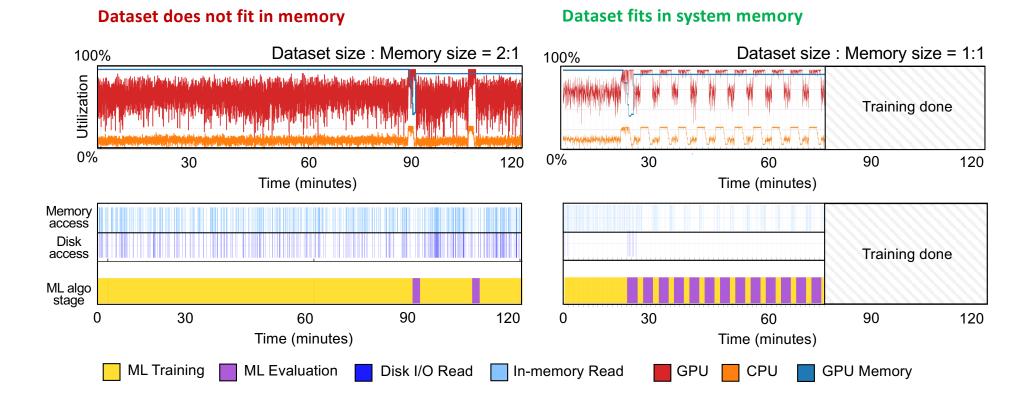


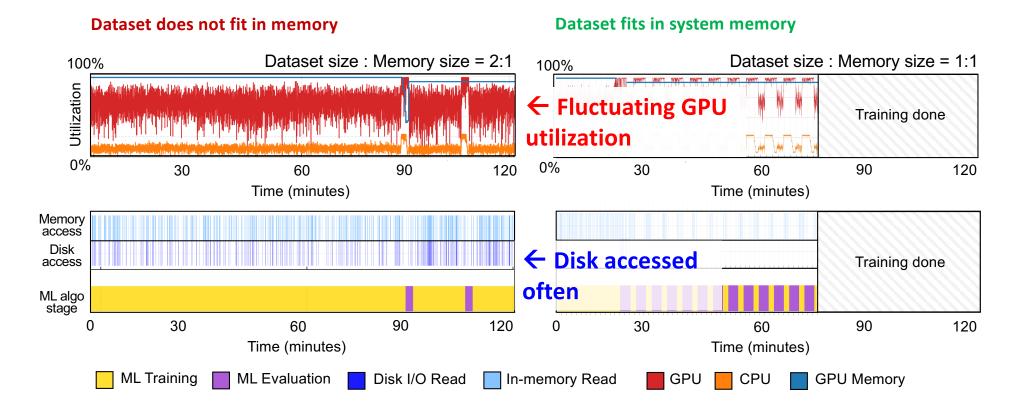


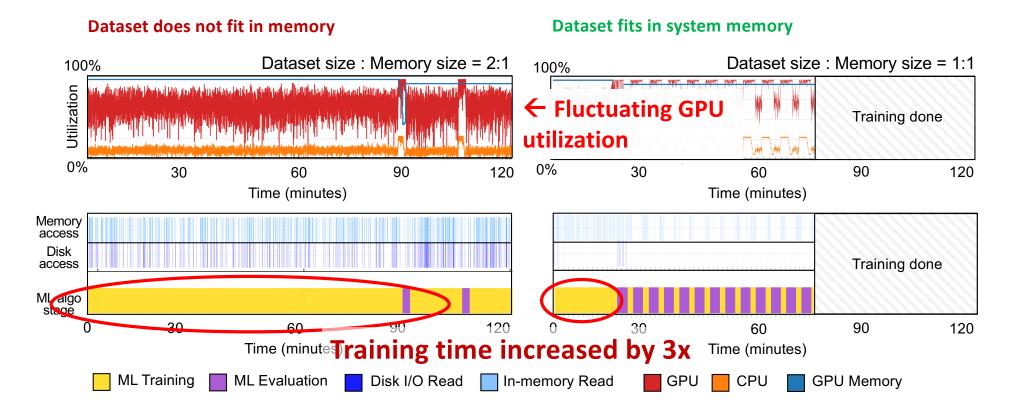
Dataset fits in system memory



Dataset fits in system memory







Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

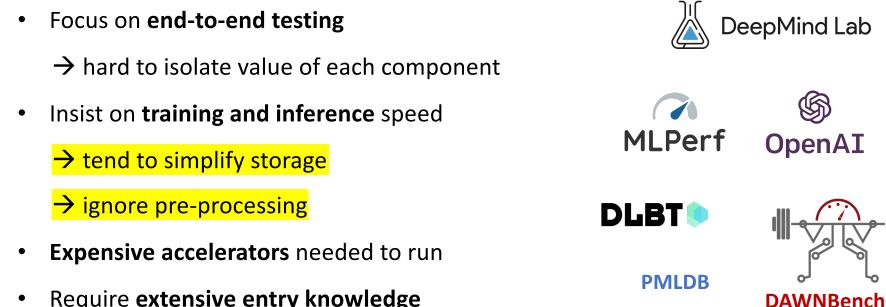
Why create an ML Storage benchmark?

Why create an ML Storage benchmark?

- Understand <u>storage</u> bottlenecks in ML workloads and propose optimizations
 - Help AI/ML researchers and practitioners make an informed <u>storage</u> decision

MLPerf Storage Working Group (132 members)

Current ML/AI benchmarks

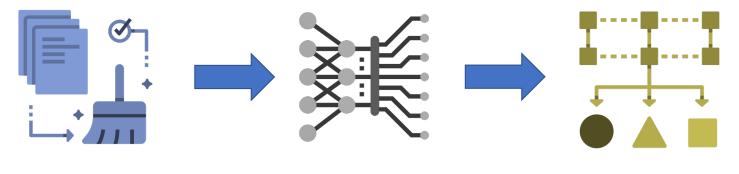


Require extensive entry knowledge ٠

Benchmark Vision

Existing benchmarksOur workFocus on end-to-end testingFocus on storage impact in ML/AISimplified storage setupRealistic storage & pre-processing settingsExpensive accelerators needed to runNo accelerator required to runRequire extensive entry knowledgeMinimal AI/ML knowledge required

Stages of the ML Pipeline

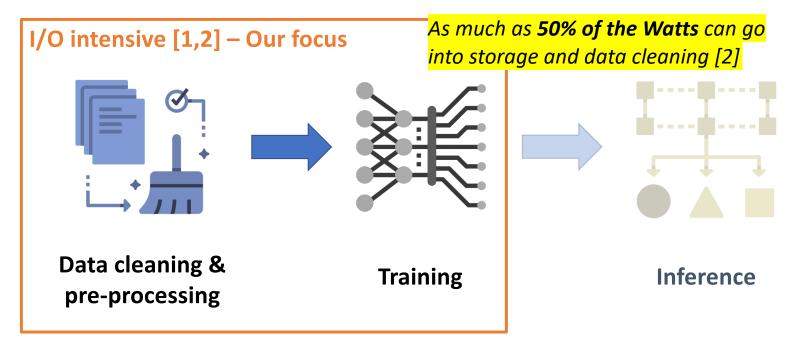


Data cleaning & pre-processing

Training

Inference

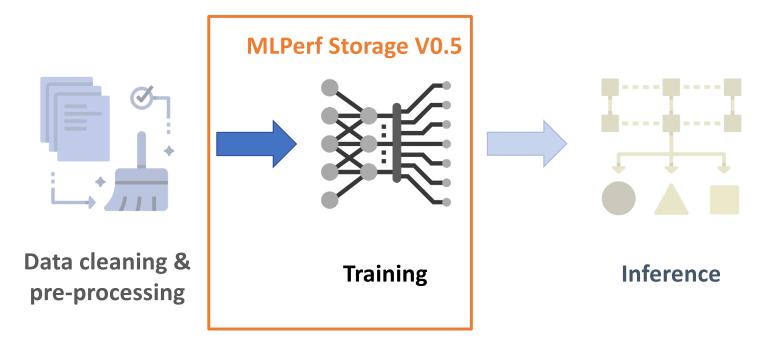
Stages of the ML Pipeline



[1] Murray et al. tf.data: A Machine Learning Data Processing Framework, VLDB 21.

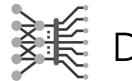
[2] Zhao et a. Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA 22.

Stages of the ML Pipeline



[1] Murray et al. tf.data: A Machine Learning Data Processing Framework, VLDB 21.

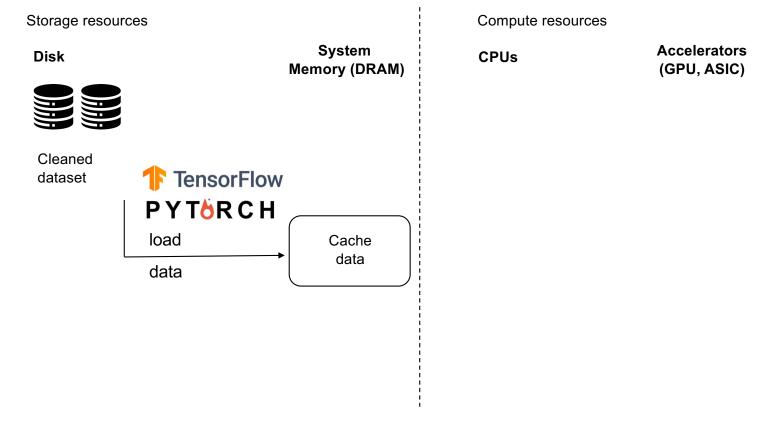
[2] Zhao et a. Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA 22.

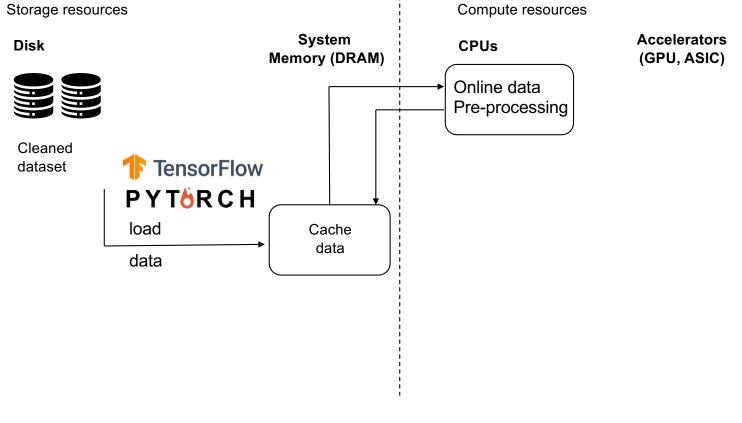


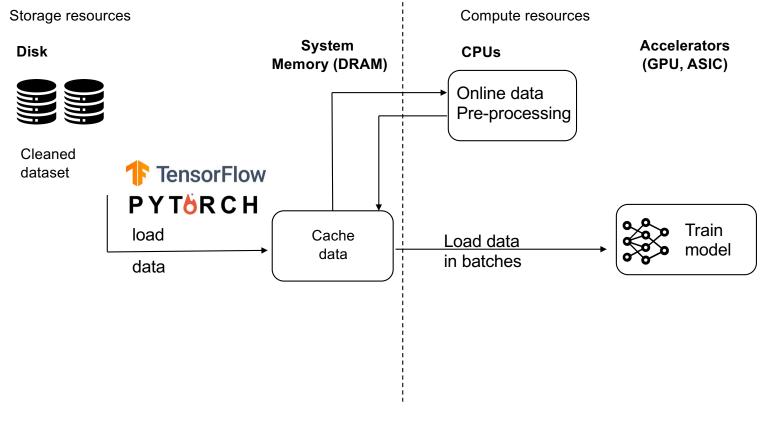
Data pipeline in ML: Training

Storage resources		Compute resources	
Disk	System Memory (DRAM)	CPUs	Accelerators (GPU, ASIC)
Cleaned dataset			

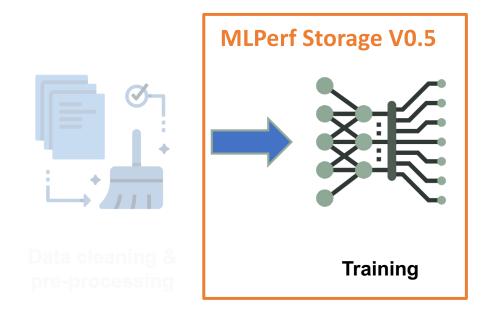
Data pipeline in ML: Training







MLPerf Storage



Focus on storage impact in ML/AI Realistic storage settings in training phase No accelerator required to run Minimal AI/ML knowledge

MLPerf Storage – workloads

Workload	Vision	Natural language processing	Recommender Systems (TBA)	Scientific (TBA)	Vision (TBA)
Model	3D U-Net	BERT	DLRM	Cosmoflow	ResNet-50
Seed data	KiTS19 Set of images	Wikipedia 2020 Text	Criteo Terabyte Click logs	CosmoFlow N-body simulation	ImageNet
Framework	Pytorch	Tensorflow	Pytorch	Pytorch (Dali)	Pytorch
I/O behavior	Randomly select and read a large file	Sequential access of small subset of files, streamed.	Random access inside one large file	Access of medium- sized files, using custom data loader	Sequential access of many small files

https://github.com/mlcommons/storage

MLPerf Storage – Benchmark metric

Must capture dynamics between storage and compute.

MLPerf Storage – Benchmark metric

Must capture dynamics between storage and compute.

Storage-centric metrics

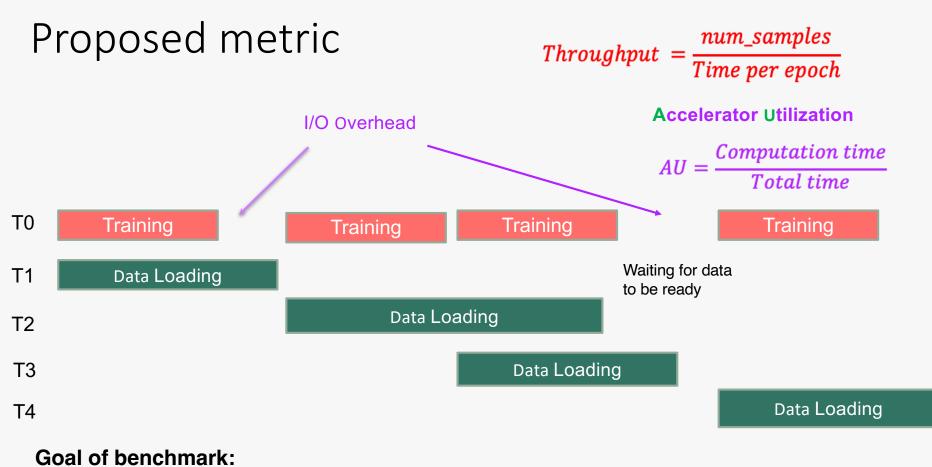
- ✓ IOPS
- ✓ Latency
- ✓ Read/Write throughput
- ✓ Capacity

Compute-centric metrics

- ✓ Training time
- ✓ Trained model accuracy
- ✓ Accelerator utilization

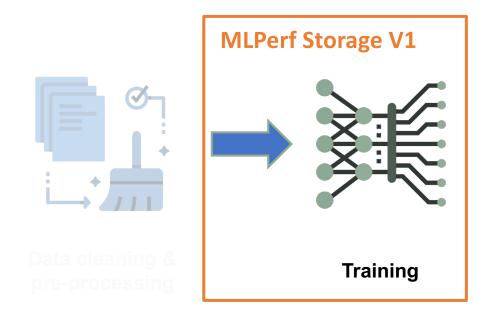
⊗Neither metric is enough to capture the storage-compute relationship

- Storage metrics too generic. Cannot capture dynamics of ML workloads.
 - Compute-centric metrics too narrow (e.g., no notion of dataset size).

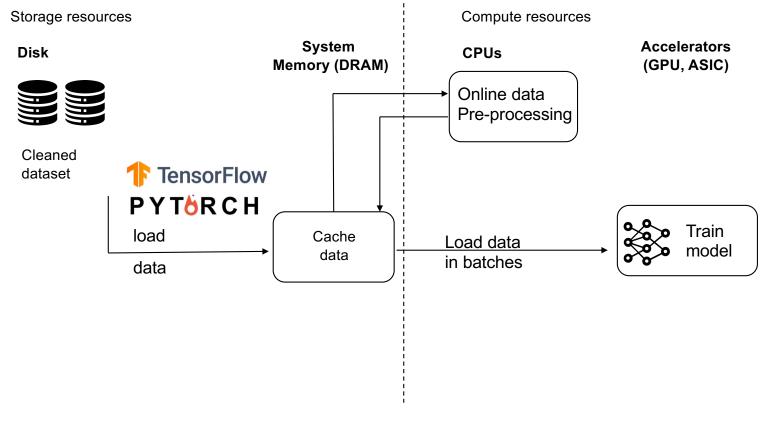


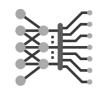
Maximize samples / second, given an Accelerator Utilization > 90% at a certain scale.

MLPerf Storage

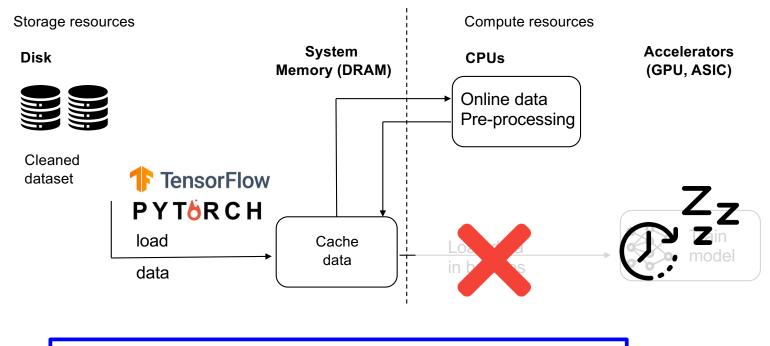


Focus on storage impact in ML/AI Realistic storage settings in training phase No accelerator required to run Minimal AI/ML knowledge



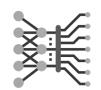


Data pipeline in MLPerf Storage benchmark



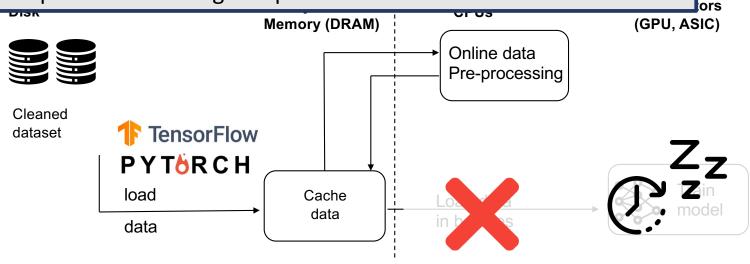
Benchmark is built as an extension of DLIO [1]

[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.



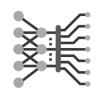
Data pipeline in MLPerf Storage benchmark

 Realistic storage settings: nothing changes in data pipeline, apart from training computation.

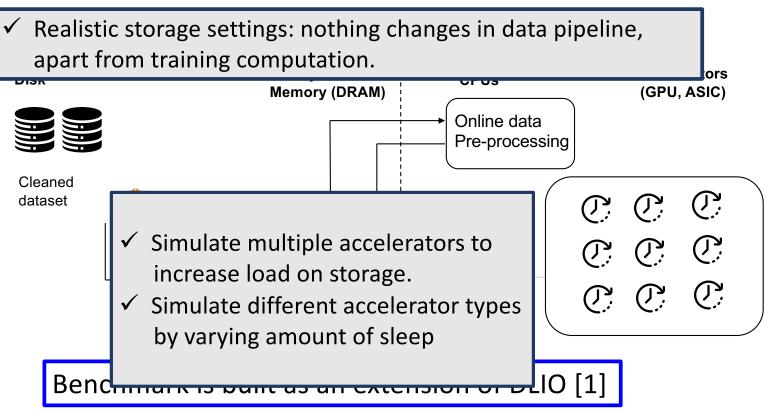


Benchmark is built as an extension of DLIO [1]

[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.



Data pipeline in MLPerf Storage benchmark



[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.

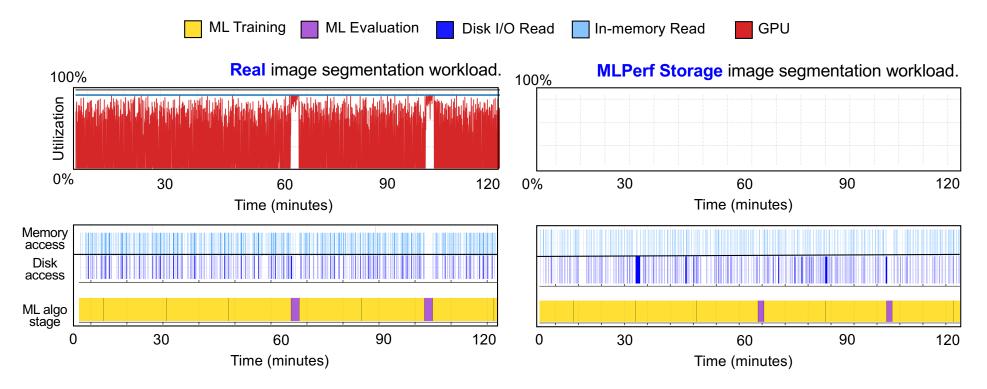
Experimental Evaluation

- DGX-1 server
 - 8 x V100 GPUs, 32GB GPU memory
 - 512GB DRAM
- Dataset size : Host memory size = 2:1

3D U-Net

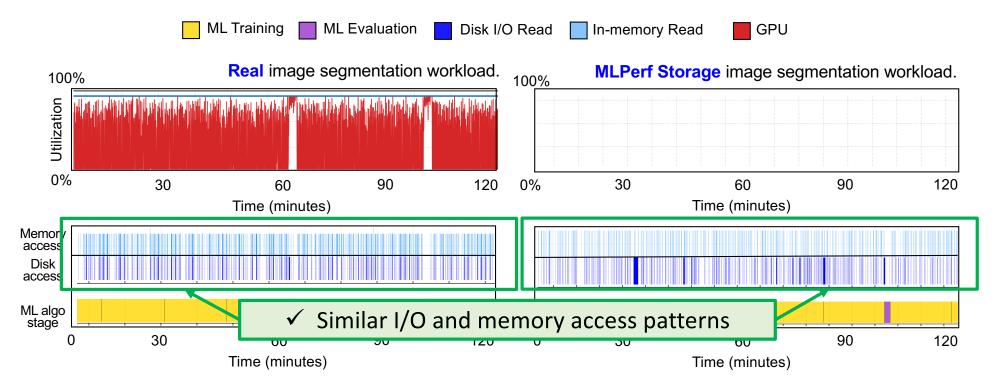
- Pytorch, KiTS19 dataset seed
- Small model, large data.
 - 100s MB per sample
- One sample per file.

Simulating training time does not impact I/O patterns



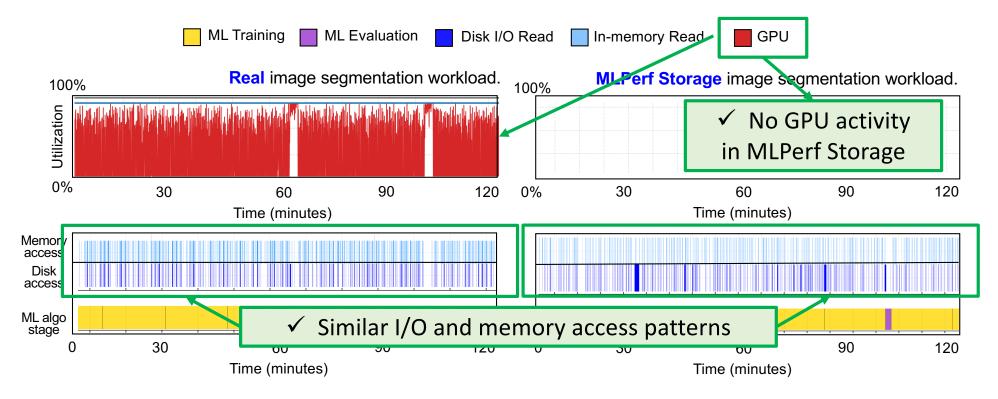
Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset : KiTS19, Dataset size: Memory size ratio 2:1

Simulating training time does not impact I/O patterns



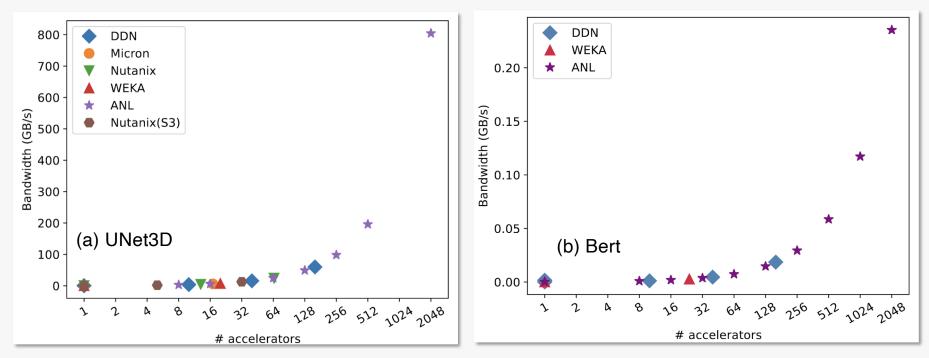
Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset : KiTS19, Dataset size: Memory size ratio 2:1

Simulating training time does not impact I/O patterns



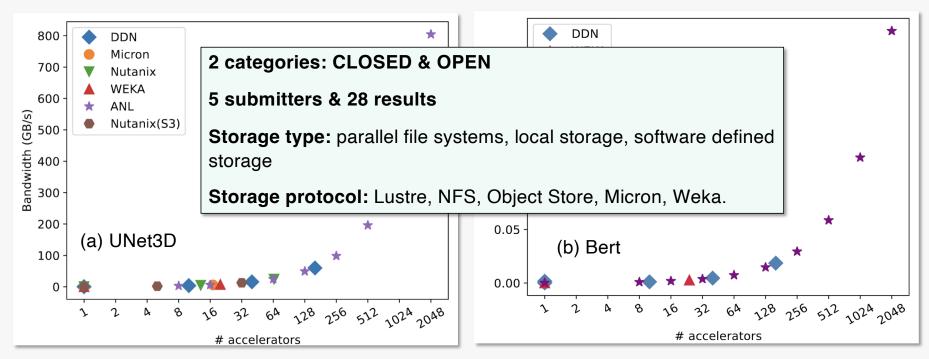
Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset : KiTS19, Dataset size: Memory size ratio 2:1

MLPerf Storage v0.5 results overview



Scatter plots of the results from the submitters: (a) UNet3D and (b) Bert. UNet3D is I/O intensive workload and Bert is compute intensive

MLPerf Storage v0.5 results overview



Scatter plots of the results from the submitters: (a) UNet3D and (b) Bert. UNet3D is I/O intensive workload and Bert is compute intensive

Next Steps in MLPerf Storage

Collect processing times for different accelerator types: A100, H100.

Benchmark competition round 2: <u>https://github.com/mlcommons/storage</u>

I/O in distributed training

New workloads (LLM, text-to-image, HPC)

Workload collocation

Extend benchmark with ML pre-processing phase.

McGill DISCS Lab

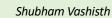
discslab.cs.mcgill.ca gitlab.cs.mcgill.ca/discs-lab

Postdoctoral Researcher

Nelson Bore

Dr. Stella Bitchebe

Jiaxuan Chen



Rahma Nouaji

Zachary Doucet

Ruoyu Deng

47

Key Takeaways – MLPerf Storage

MLPerf Storage is a new benchmark

Realistic storage settings

No accelerators required to run

Follow MLPerf Storage repository for updates:

https://github.com/mlcommons/storage

Get involved https://mlcommons.org/workinggroups/benchmarks/storage/ Share your thoughts Email <u>oana.balmau@mcgill.ca</u>

Thanks to all working group co-chairs!

Curtis Anderson Panasas

Huihuo Zheng Argonne National Labs

Johnu George, Nutanix

48