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MLPerfTM Storage v0.5  - Workloads
Number of simulated V100 GPUs for AI training

This benchmark suite measures how fast storage 
systems can supply training data when a model is 
being trained. 

Each workload supported by MLPerf Storage is 
defined by a corresponding MLPerf Training 
benchmark. There are two workloads, 3D UNET 
and BERT-large.

The MLPerf  name and logo are trademarks of MLCommons Association in the 

United States and other countries. All rights reserved. 

From Characterizing Machine Learning I/O with MLPerf Storage
Oana Balmau - CHEOPS @ EuroSys, May 8th , 2023



DDN Storage submitted

DDN all-flash appliance

The AI400X2 appliance is a fully integrated and optimized 
shared data platform with predictable capacity, capability, and 
performance. The all-NVMe configuration provides optimal 
performance for a wide variety of workload and data types and 
ensures that DGX POD operators can achieve the most from at-
scale GPU applications, while maintaining a single, shared, 
centralized data platform.

• Every AI400X2 appliance delivers over 90 GB/s and 3M IOPS 
directly to DGX H100 systems in a DGX SuperPOD. 

• Shared performance scales linearly as additional AI400X2 
appliances are integrated to the DGX SuperPOD. 

AI400X2 powered by EXAScaler 

scale

Single-shared parallel 
filesystem



MLPerfTM Storage v0.5  - Systems  
DDN submitted 2 systems

AI400X2_24x13.9TiB_nvme_8xHDR200 AI400X2_24x3.5TiB_nvme_4xHDR200

https://github.com/mlcommons/storage_results_v0.5/blob/main/closed
/DDN/systems/AI400X2_24x13.9TiB_nvme_8xHDR200.pdf

https://github.com/mlcommons/storage_results_v0.5/blob/main/closed/D
DN/systems/AI400X2_24x3.5TiB_nvme_4xHDR200.pdf

The MLPerf  name and logo are trademarks of MLCommons Association in the 

United States and other countries. All rights reserved. 

Single client system Multi-clients system

https://github.com/mlcommons/storage_results_v0.5/blob/main/closed/DDN/systems/AI400X2_24x13.9TiB_nvme_8xHDR200.pdf
https://github.com/mlcommons/storage_results_v0.5/blob/main/closed/DDN/systems/AI400X2_24x13.9TiB_nvme_8xHDR200.pdf
https://github.com/mlcommons/storage_results_v0.5/blob/main/closed/DDN/systems/AI400X2_24x3.5TiB_nvme_4xHDR200.pdf
https://github.com/mlcommons/storage_results_v0.5/blob/main/closed/DDN/systems/AI400X2_24x3.5TiB_nvme_4xHDR200.pdf


MLPerfTM Storage v0.5 - Results Training simulation – Single Host - CLOSED

[1] MLPerf  Storage v0.5 Closed. Retrieved from https://mlcommons.org/en/storage-results-05/ 11 September 2023, entry 0.5-0002. Result verified by 

MLCommons Association. The MLPerf  name and logo are trademarks of MLCommons Association in the United States and other countries. All rights 

reserved. Unauthorized use strictly prohibited. See www.mlcommons.org for more information.
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DDN system AI400X2_24x13.9TiB_nvme_8xHDR200[1] 
Single client – Single AI400X2



MLPerfTM Storage v0.5 - Results Training simulation – Multiple hosts -CLOSED

[1] MLPerf  Storage v0.5 Closed. Retrieved from https://mlcommons.org/en/storage-results-05/ 11 September 2023, entry 0.5-0005. Result verified by 

MLCommons Association. The MLPerf  name and logo are trademarks of MLCommons Association in the United States and other countries. All rights 

reserved. Unauthorized use strictly prohibited. See www.mlcommons.org for more information.

DDN system AI400X2_24x3.5TiB_nvme_4xHDR200[1]
Multiple client – Single AI400X2 
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The Rise of Data

From LLM Workload to 
Infrastructure Consideration
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Parameters in LLM over Years:  Exponential Growth

© DDN 2024

Jan. , 2024

Log Scale on Y

In the last 3 years

Model size x1000
GPU memory  x5

Megatron-Turing 
NLG 530B



Considering Ψ, the model size expressed in number of parameters

• For Inference Memory consumption is 2xΨ Byte

• 17B model requires 34GB of memory to run

• For Training Memory pressure depends on:

• Parameters, half precision,  2xΨ Byte

• Gradient, half precision,  2 x Ψ Byte

• Optimizers states,  3 states single precision 12 x  Ψ Byte

The total amount of memory needed:

Byte needed =  16 x number of parameters

A 17B parameters model = 272 GB of memory: Not available even on latest GPUs

LLM Memory Consumption: training is demanding

© DDN 2024
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LLM Memory Offloading: Zero [2020] 

ZeRO: framework from Microsoft interleaving parallelization schemes 
to minimize memory footprint (at the cost of some communication 
overhead)

© DDN 2024

Reduction of memory footprint
• Mixture of Data Parallelism, 
Model and Pipeline parallelism
• Cap communication overhead

Jan. , 2024



• Efficiency of the transistor budget process?

o Burning Logic to get Memory

• Require multiple GPUs to perform aggregation

o Limit investigation on LLM to organizations with consequent infrastructure

• LLMs are large data structure with uneven access, temporal locality exists

LLM Walking Around the Memory Wall?

Harness multiple GPUs to aggregate their memory

© DDN 2024
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Zero to Infinity, extension of the ZeRO model

Model's parameters, gradients and optimizers states are not offloaded 
to remote GPUS, but either to CPU memory, local storage and remote 
storage

Offloading is an emerging topic: e.g. Hugging Face Accelerate, FlexGen*

*FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU

LLM Memory Offloading: ZeRO Infinity [2021]

Resurrect Out-of-Core computing

© DDN 2024
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https://proceedings.mlr.press/v202/sheng23a/sheng23a.pdf
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LLM and Storage: Bandwidth is already the key resource

Bandwidth requirement is 
growing faster than capacity.
• Bandwidth x4 over 2 years
• Capacity x2 over 2 years

• Number of parameters in 
model increases x2 than the 
number of Token in data sets

LLaMA: Open and Efficient Foundation Language 
Models



LLM and Storage: Some Subtleties
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DGX Memory Hierarchy Two memory levels
• 80 GB per GPU
• 2TB shared with CPU

Two storage levels
• PCI Gen 5 local NVMes
• 2 NDR400 IB slots for network 

attached storage.

Jan. , 2024



Memory requirements per model size 
LLM size is getting in parallel filesystem territory

44TB = 550 H100
for inference
~6000 for training

~LLAMA2 ~GPT3 ~GPT4 Future



Inference Experimental Results with BLOOM LLM

© DDN 2023

ExaScaler competitive with 
CPU Offloading
Outperforming consistently 
Local Storage

Jan. , 2024

IO size? ~ 2GB 
Inference offloading 
is Bandwidth Driven



LLM Offloading performance
A throughput problem



• Offloading of models' data to the ExaScaler alleviates 
complexity and maintains GPU efficiency

• ExaScaler scales to hundreds of PetaByte, thus removing 
memory issues from the design consideration and complexity 
equation.

• Experimentations and measurements for inference are feasible

• Training is extremely expensive to measure: MLPerf Storage

LLM and Storage: Take-Away
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• The coming generation of LLMs will put even more stress on the infrastructure

• Bandwidth: Training a hundred-trillion parameter LLM is feasible but requires 
a secondary memory pool up to 1 TiB per GPU with a bandwidth of 100 GB/s 
bidirectionally [ISCA23]

• Capacity: AI driven Data-Sets generation will lead to additional capacity 
pressure

• Growing models means growing need for Checkpointing: Write importance 
will rise.

• Current ML Workload are already 50/50 Read Write [Mascost 21]

LLM and Storage: foreseeable future

© DDN 2024
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Questions?

Thank 
You!
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